📖
eVOLVER
  • eVOLVER Documentation Wiki
  • General
    • About Us
    • eVOLVER Community
      • Code of Conduct
  • Getting Started
    • Buying eVOLVER
    • Part Sourcing
    • Unboxing and Setting Up
    • Software Installation
      • DPU Installation
      • Electron App (GUI) Installation
    • Configuring Computer and Networking
      • Router Setup
    • Calibrations
      • Temperature Calibration
      • Optical Density Calibration
      • Pump Calibration
      • Manual Calibration - calibrate.py
  • Upgrade Base eVOLVER Hardware
  • Experiments
    • Starting an Experiment
      • Carboy Media Prep
      • Preparing Vials
      • Setup Waste Carboy
      • Sterilizing Lines
      • Loading Vials and Setting Initial Conditions
      • OD Blank
      • GUI Start Guide
      • Command Line Start Guide
      • Cleaning Up After Experiment
    • Growth Curve
    • Chemostat
    • Turbidostat
    • FAQs
    • Tips and Tricks
  • Guides
    • Use the GUI to Control Parameters
    • Building a Smart Sleeve
    • Making media bottles and splitters
    • Emergency Efflux
    • View the Server Log and Restart Server
    • Updating the eVOLVER Server
    • Change Your conf.yml File
    • Arduino Software Installation
    • Raspberry Pi Configuration
    • Command Line Usage
    • Millifluidics Guides
      • Designing Millifluidics Using Eagle
      • Constructing Laser Cut Millifluidics
      • Constructing Millifluidics via SLA Printing
      • Calibrating IPPs
      • Operating Millifluidics
  • Troubleshooting
    • Troubleshooting Overview
    • Experiment Troubleshooting
      • Contamination
      • Vial Overflow, Pump Failure, and Spills
      • Tubing and Connector Blockage and Bursting
    • Optical Density (OD) Readings
    • Vial Troubleshooting
      • Replacing Photodiodes and LEDs
      • Heating Element
      • Stirring
    • Server Troubleshooting
    • Vial Platform Troubleshooting
      • Motherboard Troubleshooting/Replacement
      • 12V Power Supply Troubleshooting/Replacement
    • GUI Troubleshooting
    • eVOLVER Maintenance
  • Hardware
    • Overview of Hardware Architecture
    • Overview of Fluidics
      • Tubing and connectors
      • Peristaltic Pumps
      • Fluidics box
    • Overview of Millifluidics
      • IPPs (Integrated Peristaltic Pumps)
      • Pressure Regulator
    • Vial Caps
      • Universal Vial Cap Construction Guide (Luer Connectors Only)
      • 5 and 7 Port Nylon Tubing Caps Construction Protocol
    • Smart Sleeve
      • Vial Board
      • 🌪️Stirring
      • Temperature
      • Optical Density
        • OD90 vs OD135
    • Motherboard Layout and Circuitry
      • 🌡️Arduino
      • Sensor/Actuator Board Slots
      • Pulse Width Modulation (PWM) Boards
      • Analog-to-Digital Converter (ADC) Boards
    • Raspberry Pi
    • Chassis
    • Light Blocker / Splash Guard
    • Known Issues
  • Software
    • Overview of Software Architecture
    • DPU
      • Calibration
      • custom_script.py
      • Experiment Data Files
      • eVOLVER.py
    • Arduino
    • Server (Raspberry Pi)
      • Calibration Files
      • Configuration Files (conf.yml)
    • Known Issues
  • Extensions
    • Adding A New Experimental Parameter
      • Power Supply
      • Specific Applications
      • Custom Calibration Code
    • Custom Experiments
      • ePACE
        • ATTiny1634 Writing
        • LUX Board Troubleshooting
      • Morbidostat
      • Extractor Column
        • Extractor Volume Maintenance
        • Experiment Start
          • Sterilizing Extractor Fluidics
          • Setting up your experiment
          • Using the extractor script
        • Extractor Analysis
        • Troubleshooting
        • Example protocols
      • Phototroph Growth
        • Setup Phototroph eVOLVER
        • Photo-eVOLVER Smart Sleeves
          • Photo-eVOLVER Smart Sleeve Construction Guide
        • Experiment Guide
    • Custom Fluidics
      • Adding a Third Pump Rack
      • Bubblers / In-Vial Aeration
        • Bubbler Construction Protocol
        • Bubbler Cleaning Protocol
      • Running the slow pumps
    • min-eVOLVER
      • About
      • min-eVOLVER Construction
        • Parts
        • Construction Protocol
      • Fluidics Setup
      • Software Installation and Startup
      • send_command.py
      • Calibrations
      • Starting an Experiment
      • ePACE with min-eVOLVER
        • [v1.1] ePACE with min-eVOLVER
      • Troubleshooting
    • Interfacing with Other Systems
  • Contributing
    • Guidelines for Contribution
    • Reporting a Bug / Hardware Failure
    • Documentation
      • Making a Forum Post
      • How to Edit the Wiki
    • Software Development
    • Hardware Development
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. Hardware
  2. Overview of Millifluidics

Pressure Regulator

Described initially in Huang, Heins et al. 2022 Nature Biotech

Description

As IPP devices are sensitive to changes in pressure at valves and in connected media bottles, we developed an 8-channel pressure regulator that can be used to regulate these pressures through the eVOLVER framework. The device consists of sets of two proportional valves that can limit air flow from a high-pressure source and a vent at atmospheric pressure. By connecting an electronic pressure gauge to the output of this valve configuration, it is possible to implement proportional-integral-derivative (PID) control over the valves in order to set the output pressure to any desired level between the input and atmospheric pressure. We validated the functionality of this device by regulating pressure at 1.5 psi over 24 hours, and compared the performance of our device with that of a fixed, manually set regulator (PARKER-WATTS R25-02A) connected to the benchtop air supply (Supplementary Figure 3). The average pressure with PID control was 1.498 psi with an RMS error of 0.0086 psi, while the fixed regulator had an average pressure of 1.706 psi with an RMS error of 0.2220 psi. Large pressure deviations (>0.5 psi) that can affect the performance of the devices were observed with the fixed regulator, but were successfully eliminated with our automated pressure regulator scheme. We further characterized the effects of pressure changes at various locations in the system in order to optimize performance of the IPP devices for the course of a PACE experiment (Supplementary Figure 3).

PreviousIPPs (Integrated Peristaltic Pumps)NextVial Caps

Last updated 2 years ago

Was this helpful?