📖
eVOLVER
  • eVOLVER Documentation Wiki
  • General
    • About Us
    • eVOLVER Community
      • Code of Conduct
  • Getting Started
    • Buying eVOLVER
    • Part Sourcing
    • Unboxing and Setting Up
    • Software Installation
      • DPU Installation
      • Electron App (GUI) Installation
    • Configuring Computer and Networking
      • Router Setup
    • Calibrations
      • Temperature Calibration
      • Optical Density Calibration
      • Pump Calibration
      • Manual Calibration - calibrate.py
  • Upgrade Base eVOLVER Hardware
  • Experiments
    • Starting an Experiment
      • Carboy Media Prep
      • Preparing Vials
      • Setup Waste Carboy
      • Sterilizing Lines
      • Loading Vials and Setting Initial Conditions
      • OD Blank
      • GUI Start Guide
      • Command Line Start Guide
      • Cleaning Up After Experiment
    • Growth Curve
    • Chemostat
    • Turbidostat
    • FAQs
    • Tips and Tricks
  • Guides
    • Use the GUI to Control Parameters
    • Building a Smart Sleeve
    • Making media bottles and splitters
    • Emergency Efflux
    • View the Server Log and Restart Server
    • Updating the eVOLVER Server
    • Change Your conf.yml File
    • Arduino Software Installation
    • Raspberry Pi Configuration
    • Command Line Usage
    • Millifluidics Guides
      • Designing Millifluidics Using Eagle
      • Constructing Laser Cut Millifluidics
      • Constructing Millifluidics via SLA Printing
      • Calibrating IPPs
      • Operating Millifluidics
  • Troubleshooting
    • Troubleshooting Overview
    • Experiment Troubleshooting
      • Contamination
      • Vial Overflow, Pump Failure, and Spills
      • Tubing and Connector Blockage and Bursting
    • Optical Density (OD) Readings
    • Vial Troubleshooting
      • Replacing Photodiodes and LEDs
      • Heating Element
      • Stirring
    • Server Troubleshooting
    • Vial Platform Troubleshooting
      • Motherboard Troubleshooting/Replacement
      • 12V Power Supply Troubleshooting/Replacement
    • GUI Troubleshooting
    • eVOLVER Maintenance
  • Hardware
    • Overview of Hardware Architecture
    • Overview of Fluidics
      • Tubing and connectors
      • Peristaltic Pumps
      • Fluidics box
    • Overview of Millifluidics
      • IPPs (Integrated Peristaltic Pumps)
      • Pressure Regulator
    • Vial Caps
      • Universal Vial Cap Construction Guide (Luer Connectors Only)
      • 5 and 7 Port Nylon Tubing Caps Construction Protocol
    • Smart Sleeve
      • Vial Board
      • 🌪️Stirring
      • Temperature
      • Optical Density
        • OD90 vs OD135
    • Motherboard Layout and Circuitry
      • 🌡️Arduino
      • Sensor/Actuator Board Slots
      • Pulse Width Modulation (PWM) Boards
      • Analog-to-Digital Converter (ADC) Boards
    • Raspberry Pi
    • Chassis
    • Light Blocker / Splash Guard
    • Known Issues
  • Software
    • Overview of Software Architecture
    • DPU
      • Calibration
      • custom_script.py
      • Experiment Data Files
      • eVOLVER.py
    • Arduino
    • Server (Raspberry Pi)
      • Calibration Files
      • Configuration Files (conf.yml)
    • Known Issues
  • Extensions
    • Adding A New Experimental Parameter
      • Power Supply
      • Specific Applications
      • Custom Calibration Code
    • Custom Experiments
      • ePACE
        • ATTiny1634 Writing
        • LUX Board Troubleshooting
      • Morbidostat
      • Extractor Column
        • Extractor Volume Maintenance
        • Experiment Start
          • Sterilizing Extractor Fluidics
          • Setting up your experiment
          • Using the extractor script
        • Extractor Analysis
        • Troubleshooting
        • Example protocols
      • Phototroph Growth
        • Setup Phototroph eVOLVER
        • Photo-eVOLVER Smart Sleeves
          • Photo-eVOLVER Smart Sleeve Construction Guide
        • Experiment Guide
    • Custom Fluidics
      • Adding a Third Pump Rack
      • Bubblers / In-Vial Aeration
        • Bubbler Construction Protocol
        • Bubbler Cleaning Protocol
      • Running the slow pumps
    • min-eVOLVER
      • About
      • min-eVOLVER Construction
        • Parts
        • Construction Protocol
      • Fluidics Setup
      • Software Installation and Startup
      • send_command.py
      • Calibrations
      • Starting an Experiment
      • ePACE with min-eVOLVER
        • [v1.1] ePACE with min-eVOLVER
      • Troubleshooting
    • Interfacing with Other Systems
  • Contributing
    • Guidelines for Contribution
    • Reporting a Bug / Hardware Failure
    • Documentation
      • Making a Forum Post
      • How to Edit the Wiki
    • Software Development
    • Hardware Development
Powered by GitBook
On this page
  • Burst Tube at Barb Connection
  • Obstructions
  • Unblocking With Syringe
  • Unblocking by Soaking the Lines
  • Stuck luer-lok connectors

Was this helpful?

Edit on GitHub
Export as PDF
  1. Troubleshooting
  2. Experiment Troubleshooting

Tubing and Connector Blockage and Bursting

PreviousVial Overflow, Pump Failure, and SpillsNextOptical Density (OD) Readings

Last updated 1 year ago

Was this helpful?

Burst Tube at Barb Connection

When there is an obstruction in the line, from dried media or biofilm, the peristaltic pumps can produce up to 45 psi of pressure, which is enough to exceed the barbed connector tolerance and burst barb connections. This is clearly undesirable, so if you find that one of your barb connections has burst, check the length of the line for obstructions. If it's an efflux line to the waste container (opaque), assume it has an obstruction.

Obstructions

For the pumps that we typically use for eVOLVER, 1/16" ID tubing does not resist flow in any appreciable amount. If a pump is not pulling liquid, it is likely blocked or obstructed.

Unblocking With Syringe

Biofilm obstructions can happen during long experiments with a biofilm-forming organism like E. coli - your best bet is to pause the experiment and bleach sterilize all lines before restarting. If your line is completely blocked, either replace the line or clear the obstruction by pushing water through the line with a 50 mL syringe (shown below).

Unblocking by Soaking the Lines

If the syringe method does not immediately work to clear the blockage, the blocked lines can be soaked in water for a few days to help rehydrate the dried media/biomass - the silicone tubing is quite permeable, so water can slowly enter the tubing and help loosen any dried blockage so that it can be flushed out with a syringe.

Stuck luer-lok connectors

Residual or leaked media on the ends of luer-lok connectors can dry and leave the connectors stuck. Rather than reach for a pair of plyers, soak the connection in hot water to dissolve the media. This can also help for any stubborn fluidic connection, and make tubing much more pliable.

Using a syringe to clear blocked fluidics lines